All Posts tagged Study

JETREA® (ocriplasmin) by ThromboGenics

JETREA® (ocriplasmin) by ThromboGenics

Development of OCT (optic coherence tomography) has help clinicians gain a better understanding of the critical role played by the vitreous in macular and retinal vascular diseases.

With early-stage PVD (posterior vitreous detachment), fibrocellular organization of vitreous remnants left on the retinal surface during vitreoretinal separation is the most likely cause of idiopathic epiretinal membrane.

There has been a longstanding interest in developing pharmacologic methods for nonsurgical induction of PVD, a technique known as pharmacologic vitreolysis. Pharmacologic agents are candidates for vitreolysis if they have the ability to induce vitreous liquefaction, weakening the vitreoretinal adhesion or both. A variety of agents have been studies to date, including:

  • Collagenase
  • Chondroitinase
  • Dispase
  • Hyaluronidase
  • Nattohinase
  • Plasmin
  • Tissue plasminogen activator
  • Vitreosolve (Vitreoretinal Technologies, Inc., Irvin, CA)
  • Arginine-glycerine-aspartate peptide.
  • Ocriplasmin (formally microcplasmin)

Recently, two, Phase-3 clinical trials of ocriplasmin in patients with symptomatic vitreomacular adhesions were completed.

Vitreomacular adhesion (VMA) at the macula causes metamorphopsia or visual distortion. Ocriplasmin by ThromboGenics is the only agent that induces both liquefaction and separation of the vitreous from the retinal interface.

Ocriplasmin Efficacy

VMA = VMT

  • Pharmacologic resolution of VMA at 28 days was 26.5%.
  • Placebo group (p‹0.001) was 10.1%.
  • If patients with epiretinal membranes were excluded, 34.5% versus 14.3%.

Side Effects

There were 7.7% who had unexplained visual loss, which resolved within six months. Other side effects included:

  • Floaters – 13%
  • Eye pain – 10.5%
  • Photopsia – 10%
  • Blurred vision – 6.5%

Less than robust results of the ocriplasmin trials point to the complexity of pharmacologic vitreolysis and suggest that the ideal vitreolytic agent, or combination of agents, has yet to be identified. Other options would include:

  • Intravitreal gas injection (pneumatic vitreolysis)
  • Vitreous surgery

Vitreous surgery currently remains the gold standard for treating significant vitreomacular disorders and likely will continue to be the preferred treatment for some time.

The perfect vitreolytic drug capable of inducing PVDs consistently with a clear retinal surface and no toxicity concerns would be the preferred treatment.

Page

References and Recommended Reading

Papers of particular interest, published within the annual period of review, have been highlighted as:
*of special interest
**of outstanding interest

Additional references related to this topic can also be found in the Current World Literature section in this issue (p. 226).

Radtke ND, Aramant RB, Petry HM, et al. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 2008; 146:172-182.

This study demonstrates the safety and clinical benefit of retina RPE grafts in human subjects with retinal degeneration. Visual improvement was observed in seven of ten patients (three retinitis pigmentosa and four AMD).

Radtke ND, Aramant RB, Seiler MJ, et al. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa. Arch Ophthalmol 2004; 122:1159-1165.

We were honored that our work received such recognition from these esteemed professors.

Page

TruSopt

TruSopt (dorzolamide) reduces cystoid macular edema in patients with Retinitis Pigmentosa.
Gerald Fishman, M.D., University of Illinois at Chicago, demonstrated that all patients in his study showed a significant reduction in swelling in at least one eye after using TruSopt three times a day for one to two months. Results of the study were published in the January 10, 2007, issue of the British Journal of Ophthalmology.

Page